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INTRODUCTION

The work described in this report was performed in collaboration with Professor
Surendra Singh, who came to the Naval Air Warfare Center Weapons Division
(NAWCWD), China Lake, California, during June and July 2005. Professor Singh, a
faculty member in the Electrical Engineering Department, University of Tulsa, Tulsa,
Oklahoma, was visiting as an Office of Naval Research - American Society of Electrical
Engineers (ONR-ASEE) Summer Faculty Fellow. He worked in the Optics, RF, and
Material Physics Section of the Physics and Computations Sciences Branch. This work
involves implementing the stabilized version of the bi-conjugate gradient algorithm in
order to iteratively solve a linear system of equations resulting from integral equations
arising in electromagnetic scattering problems. An implementation of a convergence
acceleration transform to speed up the convergence of an iterative scheme is included
here as the appendix to the report.

The solution of a system of linear equations can be obtained from direct methods,
such as matrix inversion, and indirect methods that include a variety of iterative schemes.
The conjugate gradient method is one such iterative method that provides an additional
advantage: the coefficient matrix need not be stored in its entirety in memory. This
provides a much needed flexibility in very fine discretizations of the geometry under
investigation without taxing the memory requirements. We implement the stabilized
version of the conjugate gradient method and provide some convergence studies. Noted
that the stabilized version converges very rapidly to achieve a specific precision, and then
tends to oscillate if higher precision is needed. To overcome this situation, we implement
a transform to accelerate the convergence of the iterative scheme. The results of applying
this transform to three different types of integral equations are provided.

BI-CONJUGATE GRADIENT STABILIZED METHOD (bcg-stab)

The bcg-stab method is an iterative technique to solve a system of linear equations of
the form, Ax = b. The matrix, A, is a known matrix of order NxN, where N is the
number of unknowns, b is the known forcing function of length N, and x is the
solution vector (length N). The method can be implemented without storing the matrix
A. The algorithm can be coded such that only a row or a column of the matrix is needed
at a time. This can be very helpful in cases where storing the entire matrix would pose a

3
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significant storage problem. The drawback of not storing the matrix is that it gets
computed twice in each iteration of the method. So we gain advantage in storage but we
pay a price in increased computation time.

Here is the pseudo-code for the beg-stab method (Reference 1):

Initialization: alpha=l; rerr=100; conv=10-4 r; = b; Vo = Po = 0 ; P0 =o co)o 0O

nitm=nunkn;
val I=dot(b,b)
for i = 1: nitm

if (rerr > conv)
p, = dot(b, r,-)

8 = (p, / p, )(a,/ , )

p, =,_ + /8(p,- - ao,_lvi1 )

v, zAp1 Note: This operation can be split up so that we use one row at a time.

a= p, /dot(b,v,)

s = ri_, - aV,

t = As Note: This operation can be split up so that we use one row at a time.
aoi =dot (t, s) / dot (t, t)

Xi = X1.1 +--iP + O'+S

r, =s--ot

rerr = abs(dot(r, r ) vail)

end
end

SUBROUTINE begstab(b,nunkns,nitm,conv,x,nit,rerr)

Input Variables

b (complex vector): Right-hand side or excitation vector of length nun kns.
nunkns (integer): Number of unknowns (N),
nitm (integer): Maximum number of iterations for bcg-stab (typically set equal to
nunkns).

conv (real): Convergence factor to stop computation for bcg-stab (typically 10-4 to 10-1).

Output Variables

x (complex). Solution vector of length nunkns.

4
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nit (integer): Number of iterations taken by beg-stab method to converge.
rerr (real): Residual error. The bcg-stab method will stop when the residual error (rerr)
becomes less than the convergence factor (conv).

Lippman-Schwinger Integral Equation

We implement the beg-stab method in the numerical solution of the Lippman-
Schwinger integral equation (Reference 2):

E(r) = E" (r) + k0 JG " (r, r') -Ae(r') E(r') dr' (1)
S

In Equation 1, the symbols have their usual meaning: r = (x, y), E is the total electric

field, E"' is the incident electric field, GB is the two-dimensional (2-D) free-space
Green tensor and its explicit form is given in Reference 2, k0 =2.-/2, and

Ag(r) £ '-1, when r is entirely within the nanowire with permittivity c, and 0

otherwise. The nanowire is assumed to be infinite in the z direction and all spatial
variations occur in the x - y plane. The integration is carried out over the cross section

of the nanowire that is embedded in vacuum. We solve this equation numerically for a
nanowire 30 rn in size (side dimension) illuminated by an incident field of wavelength,
2 = 400 nm, with the electric field vector perpendicular to the axis of the nanowire. In
this example we solved for zero absorption, that is, the imaginary part of the permittivity
is zero.

Table 1 convergence comparison of beg and the beg-stab for two values of the
convergence factor. nrx is a geometry discretization parameter such that the number of
unknowns is N = 2*nrx*nrx. # is the number of iterations taken by the method to
converge.

Table 1. Convergence Comparison, nvx and N.

Parameter No. of conv = 10-4 conv = 10-5
unknowns

nrx N beg no. beg-stab no. beg no bcg-stab no.

20 800 90 57 127 174
30 1800 320 37 424 571
40 3200 589 19 777 688
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Figures 1 and 2 show the convergence behavior of the bcg-stab method as a function
of the iterations for cony 10-' and cony = 1i-5, respectively. We see that the method
converges extremely rapidly for cony = 1 0-' in comparison to bcg, which takes 589
iterations to converge, as indicated in Table 1. The numerical results shown in Table I
were obtained on a Pentium IV 32-bit PC. The performance and precision of the bcg-stab
method may improve if the code is run on a 64-bit machine.

-1.

o -2.5
0)
0

-3.5

-4'

0 2 4 6 8 10 12 14 16 18

iteration number

FIGURE 1. Convergence of bcg-stab Method Showing Log of Residual
Versus Iterations for cony 10-4 and nrx = 40.
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FIGURE 2. Convergence of beg-stab Method Showing Log of Residual
Versus Iterations for conv = 1 0-' and nrx = 40.

When the imaginary part of permittivity is non-zero, the convergence of the
algorithms is quite rapid. Table 2 is convergence comparison beg and beg (bcg stab) as a
function of wavelength, /1, and convergence factor (conv). The results are obtained from
FORTRAN code: eigen2. The silver nanowire is solid and the the imaginary part of
epsilon (ei) # 0, nrx = 40, (and N = 3200). The convergence of beg stab as a function
of the iterations is shown in Figures 3 and 4.

Table 1. Convergence Compairson, k and conv.

/,I= 300 nm 2 = 400 nm 2 = 500 nm
Number of iterations Number of iterations Number of iterations

conv bcg beg stab beg beg stab beg beg stab
10- 8 5 66 41 152 83

10t- 11 7 101 75 249 205
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FIGURE 3. Convergence of bcostab Method for nrx = 40 (Number of
Unknowns = 3200), A = 400 nrm, Convergence Factor = 10 8 (Result
Obtained From MATLAB Version of the Code).



NAWCWD TP 8608

-2

-3

-4

PDU -5C',
V

-8-

- 9 . ......... .. .... --- I]

0 20 40 60 80 100 120 140 160 180
iteration number

FIGURE 4. Convergence of bcgstab Method of nrx= 40 (Number of

Unknowns = 3200), A = 500 nm, Convergence Factor (conv) = 10-
(Result Obtained From MATLAB Version of begstab).

LEVIN TRANSFORM

As we have seen in the results shown in Figure 2, the bcg-stab method oscillates for a
long time before converging. Our goal is to apply a transform such that the sequence of
vectors given by the iterative scheme (bcg-stab) will converge faster to the solution, x, of
the system Ax = b. There are a number of convergence acceleration methods, including
Levin's transform, Wynn's epsilon algorithm, Chebyschev-Toeplitz algorithm, and
Brezinski's 0 algorithm. Here we focus on the Levin transform that provides significant
enhancement in convergence of a vector sequence. To begin with, we start with the
transform as applied to a scalar sequence and then extend it to be applicable to a vector
sequence. Let S, be the partial sum of n terms of a series such that S" --> S as n --> cc,

where S is the sum of the series. If the partial sums are coming from an infinite series
that converges extremely slowly, then the scalar sequence S., S1, S2, ... , will take a

long time to converge. This is when we employ techniques to enhance the rate of

9
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convergence to arrive at S with only a small value of n. To this end, the k"' order Levin
transform, tV(S), which provides an estimate of the sum of the series, S, may be
computed as (Reference 3):

k ( k)()n +

(n.) 1=0,• • i n\ ) S,,+i+l - ,, / k =0,, .. 2
k k ,(k)( n + i)(k-1) k ý ,,2'2

A significant advantage of the Levin transform is that the higher order iterates are
computed from the partial sums, S0 , S1, S2 , ... , rather than the lower iterates as in the
case of Wynn's algorithm, thereby providing some immunity from the accumulation of
round-off errors.

Consider the solution of the following:

Ax = b (3)

where A is a known matrix (moment) of order N x N; A = [a. I, and x is the unknown

column vector of order N xI; x = [x X2 ,... X N]T, and b is the known forcing function

column vector of order N x I ; b = [b1 b2 .. .bN],. With A and b known, we calculate the
initial estimate of x, designated as Y by the use of Gauss-Seidel relaxation, thus arriving
at vectors {SO }, {S1 }, {S 2 }, and so on. Each of these vectors is of order N x 1. Once we

have three initial vectors, we can apply the Levin transform using Equation I to obtain an
estimate of the solution vector, Y. A numerical example of this process to a scalar
sequence is given in Reference 4. The application of Equation 1 to a vector sequence
requires a bit of bookkeeping, as the scalar Levin transform, t'"', now becomes a vector,

{ýt) }, of length N. As with any iterative scheme, the computation process should stop
when a convergence criterion is met. We employ the following measure:

(AC - b)11 < Cf 
(4)

~bj12

10
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The computations are stopped when the above criterion is met for a pre-defined convergence
factor, C1 , and we have the estimate of the solution, Y. We should point out that the initial

vectors can be generated from a variety of schemes. It may be possible to use the iterations
from a bcg algorithm and then subsequently use the Levin transform or any other vector
acceleration technique to enhance the convergence. One significant advantage of using the
bcg estimates is that the moment matrix, A, does not need to be stored entirely in memory,
as the algorithm can be implemented in such a way that only a row or column at a time is
needed in the computations. This alleviates, to a great extent, any storage problems
routinely encountered when solving a very large system of equations.

NUMERICAL EXAMPLES

For our first example, we consider the solution of the integral equation for the charge
distribution, q(y), on a conducting strip of width = 2w with excitation, V(y):

"Jre f q(y') ln~y y' dy' = V(y), y c (-w, w) (5)

For illustration purposes, we take the permittivity of the medium, I = F/rn. The
integral equation is cast into a system of linear equations of the form given in Equation 2
by using method of moments (MOM) with pulse basis functions and point matching.

Figure 5 shows the charge distribution for N = 150, and a forcing function, V(y) = y 2 .

Note that the Levin transform result matches very well with direct matrix inversion.

11
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40~
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y (m)

FIGURE 5. Charge Distribution on a Conducting Strip of Half-Width w = I
m, Forcing Function V(y) = y2 , Convergence Factor Cf = 10-', Number of

Unknowns N = 150.

The second example to illustrate the Levin transform involves a thin wire antenna.
The current distribution on a thin wire can be computed by the numerical solution of
Hallen's equation or Pocklington's equation. Pocklington's integral equation for the
current distribution, I(y), on a thin conducting wire of radius = a, length =2h, oriented
along the y - axis is given by:

j 4• +ko I(y')K(y - y') dy' = E' (y), y e (-h, h) (6)
d Kd 2  Y)

where

12
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1r '-j'OR

K(y - y') -2)_T J-R-o (7)

-7t

Here the distance between the observation and source point, R, can be written as:

R = [(y y,)2 + 4a 2 sin 2 0' ],/2 (8)
2

The incident electric field is given as Ey (y) = V3(y - yg) for the antenna case, where

V is the feed voltage and yg is the feed point. In Equation 6, r/ is the intrinsic

impedance and k0 is the wave number of the medium. Once again, with the application
of the method of moments, with suitable basis and testing functions, we can cast Equation
6 in the form of a system of linear equations: Ax = b. The current distribution on a center-
fed, half-wavelength (h = 2/4) thin wire antenna with V =1 volt, yg =0 m,

a = 0.0070222, CQ = 10-3, and 2 = 1 m is shown in Figure 6. A detailed account of
these examples can be found in Reference 4.

13
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x 10-3
10 - T -T I

- 5-
< ,Levin Transform (Real)

Levin Transform (Imag.)
r" Matrix Inversion (Real)

--- "Matrix Inversion (Imag.)
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Length in meters

FIGURE 6. Current Distribution on a Center-Fed, Half-Wavelength, Thin
Wire Antenna of Radius = 0.007022 2, Voltage V = 1 Volt, Number of
Unknowns N = 21, and Convergence FactorC- = 10.
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Appendix

FORTRA]N CODE FOR BI-CONJUGATE GRADIENT STABILIZED METHOD

FORTRAN listing of SUBROUTINE bog-stab:

subroutine bog-stab(b,nurikns,nitm,oonv,oi,n~i,rerr)

imnplicit none
oomplex, intent(in), dimension(l:nunkns) :b
comrplex, intent (out), dimension(l:nunkns) 01

integer, intent(in) ::nunkns,nitrn
integer, intent(out) ::nit
real, intent(in) : onv
real, intent(out) ::rerr
oomplex,ciimension(l:nunkns) :: p,r,v,s,t
complex : : beta,alpha,vall,rho, rhoi,omega
integer :: 1
complex :: CDOTU

ci=O ;p=O ;v=rO; alpha=l; omega=l; rho=l; r=b; s=0; t=O
rerrzdDO
vall=dot produot (b, b)

do nit=1,nitm
if (rerr>oonv) then
rhoi=dot-produot (b, r)

beta= (rhoi/rho) *(alpha/omega)

p=~r+beta* (p-ornega*v)

do i=l,nunkns
v(i)=~CDOTU(nunkns,arow(i),l,p,1)

enddo

alpha=~rhoi/dot-produot (b, v)
s~=r-alpha*v

do i=l,nunkns

17
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t (i) CDOTU (nunkns, arow (i),l,s, 1)
enddo
orrega=dot product (t, s) /dot-product (t, t)
ci=~ci+alpha*p+omega*s
r~s-omega*t
rho=rhoi
rerr=abs (dot product (r,r) /vall)
!print *, 'iteration#=',nit, 'residual=',rerr

else
exit
end if
end do

end subroutine bcg stab
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